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Abstract. A fourth-order non-linear Thomas-Fermi equation describing an assembly of 
fermions moving under the action of two-body exponential forces is obtained. Its physical 
boundary conditions and numerical solutions are discussed. 

1. Introduction 

The Thomas-Fermi (TF) method has been of general interest since its birth because 
of the remarkable simplicity and elegance of this formalism. For a rigorous view see, 
for example, [I]. Its original and most famous application is in atomic physics [2]. 
With regard to nuclear physics [3], there have been important developments in the 
last two decades known as extended Thomas-Fermi [4], where the TF predictions are 
obtained as the lowest-order contribution of a systematic expansion in powers of h. 
This clearly shows the semiclassical nature of the method. Recently [5] we extended 
the TF method in its most simple presentation to pure Yukawa forces and we also 
showed how a hard-core effect can be easily included in order to produce an effective 
saturation in the bound state. Furthermore, the Coulomb nature of the gravitational 
Newtonian field allows the construction of a TF analysis [ 6 ] ,  quite similar to the 
equations used in astrophysics to describe the equilibrium structure of several stellar 
objects [7]. 

The Yukawa potential has long been regarded as the most reasonable way of 
simulating a static nucleon-nucleon potential, since it is the characteristic radial 
function of a meson field theory. Notwithstanding, both the exponential force and 
the Yukawa potential have the property of a short-range, and in fact the former has 
also been used as a phenomenological nucleon-nucleon interaction [8]. The main 
difference between them lies in their short-distance behaviour: V Y u k a w a a  - K , / r  and 
V e x p a  - K 2  (K,  and K 2  are constants). 

In this paper we study what a TF method for exponential forces is like and how it 
works. In spite of its presumed analogy with the Yukawa case, it is substantially 
different, in that the exponential force leads to a fourth-order TF equation. Hence, a 
careful analysis has to be made of the boundary conditions to be imposed. 

2. Thomas-Fermi equation for exponential forces 

Let us suppose that A identical fermions of individual mass equal to m, form a bound 
distribution of radius R. The potential created by a particle located at rl at a distance 
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r1,2 = Ir, - r21 is supposed to be 

4 , , 2  = - g  exP(-pr1,2) ( 1 )  

v12 = - g 2  e x p ( - ~ r ~ . ~ )  g 2 =  v,. ( 2 )  

and the potential energy of a pair is given by 

Natural units h = c = 1 are used throughout the paper. If the number of particles per 
kinematical state is four, and assuming locally the dependence between kinetic energy 
and particle density ( n )  that holds for a non-interacting non-relativistic degenerate gas 
of fermions, then the average kinetic energy per particle will be 

Before developing the TF method for an assembly like this, let us understand in 
simple terms the physics of such a system. 

2.1. Simple analysis 

In order to evaluate the behaviour of this assembly, let us suppose that the particle 
density n is a constant from r = 0 to r = R. The total kinetic energy is thus 

and, with the convention y = pR,  the total potential energy is 

V =  -I Von2 loR du, loR du2exp(-pr12) = 
2 

( 5 )  

By minimising the total energy ( E  = T +  V )  with respect to R (dE/dR = O ) ,  we 
find the following condition of stability: 

( 9 7 r ) 2 / 3  p2 
= G(Y)  

G ( y ) = - - - + - - e - 2 y  
Y Y 2  Y 4  

30 VomA”3 

2 6 15 

G ( y )  is a universal (independent of the specific parameters of the particles and 
the interaction) positive definite function, which is plotted in figure l ( a ) .  We see that 
for any value of p, m and Vo,  if A is large enough, ( 6 a )  is always possible, i.e. there 
exists a bound system. 

The asymptotic behaviour of G ( y )  is as follows: 

There are two solutions, denoted by y ,  and y, ,  for ( 6 a ) .  They correspond to the 
minimum and to the maximum of the energy. Geometrically, in figure l ( b ) ,  we see 
that y ,  and y M  are the two crossing points between G ( y )  and the horizontal straight 
line of the constant at the left of ( 6 a ) .  For fixed values of p, m and V,, an increasing 
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Figure 1. Stability condition for an attractive exponential force. (a )  y, and y, are the 
solutions of stable and unstable equilibria. ( b )  Energy per fermion as a function of y. 

value of A makes y ,  and yM smaller and larger respectively, and eventually they would 
enter the asymptotic regimes of (7). As can be seen in figure l ( 6 )  where the energy 
per fermion is plotted against y ,  y ,  corresponds to the solution of minimum energy 
and y ,  to the maximum. The existence of a maximum in the energy is a consequence 
of the short range of the attractive force, because in a very diluted assembly the 
potential energy is practically null but not the kinetic energy, which increases according 
to (4). Only when the value R M  = yM/p  is crossed, the attraction effect is manifest 
and the total energy begins to decrease. At very short distances, the kinetic energy 
repulsion takes over again. The specific parameters used in figure 1 are: V,, = 15 MeV, 
m = 939 MeV, p = 137 MeV and A = 100. The solutions are y ,  = 1.7 and yM = 19; i.e. 
R, = 2.5 fm. 

If the value of A is very large, the radius of stability may be calculated from (7a)  
and 

R ,  = [ $ ( 9 ~ ) ' / ~ ] ' / ~ (  V , , M ~ ) - ' / ~ A - ' / ~  (8)  
is obtained. This equation illustrates the collapse induced by purely attractive interac- 
tions: the greater the value of A,  the smaller the radius of stability of a fermion 
assembly. This property must also appear in the TF method. It is noteworthy that the 
exponential forces induce a weaker form of collapse (&a A-"9) than the Yukawa 
or Coulomb forces ( R , c c A - ' / ~ ) .  Kinematically an assembly like this, if the density 
is high enough, would eventually enter a relativistic regime, but we will maintain the 
non-relativistic formulation (3) ,  taking for granted it is always valid. 
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2.2. Field equation 

According to ( l ) ,  a distribution of particles with a density n ( F )  creates a potential at 
the position F’ given by 

d ( P ’ ) = - g  d3rn(P)  exp(-pl?-7’1). (9) i 
In order to implement the TF method we need a local equation for the field 4, so 

let us apply the Laplacian operator to both sides of (9). Assuming spherical symmetry 
for C#J and for n, we get 

This result differs from the Yukawa case in a qualitative way. There, the application 
of V” leads to the massive Poisson equation, which is a second-order differential 
equation and not a second-order integro-differential equation, as we have obtained 
here. Building the TF method on (10) would be really very complicated because of its 
non-locality: the behaviour of 4 at a point depends on the value of n in all space. 
Hence it would demand an awkward self-consistency and the model would definitely 
lose its simplicity. A possible solution to this problem is to apply the V” operator 
again to both sides of (10) obtaining 

v4 4 - 2 p  ’V ’4 + p ‘4 + 8 r g p n  = o ( 1 1 )  

thus solving the problem of locality, although at the cost of increasing the order of 
the field equation from two to four. This poses the question of what are the two 
additional boundary conditions necessary for a proper solution of ( 1  1 ) .  Let us postpone 
this point for the moment. 

2.3. TF equation 

Now we impose the condition of statistical equilibrium: 

p ~ ( r ) / 2 m + g 4 ( r ) = g 4 ( R ) =  -C 

i.e. the maximum energy of a particle at any location of the distribution is a constant 
(-C). By definition -C is the potential energy of a fermion at the border of the 
distribution, where its kinetic energy vanishes, and is equal to 

2nVo -)IR n r d r [ e - p r ( ( R + r + p L 1 ) - e p r ( R - r + p - l ) ] .  ( 1 3 )  -c=- 
e JoR CLR 

Just as in ( 3 )  we assume locally 

From (12 )  and (14 )  we have 

L 
n = ~ ( 2 m ) ” ~ ( - ~ - g 4 ) ~ / ~ ,  

3 T  

Finally, by eliminating n between (15) and (11) we obtain a differential equation only 
in 4: 
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We now make a change of variable in ( 1 6 )  to the standard TF adimensional variables 
x and x. 

to obtain 

x’-  2 b 2 p 2 i  + p 4 b 4 x  + p 4 C b 5 x  = x 3 l 2 / x 1 l 2 .  (18) 

This is the TF equation for exponential forces. Its novelty lies in its fourth-order 
nature coming from ( 1 1 ) .  According to the definition of b in (17 ) ,  this length scale 
depends only on m, p and V,, that is, it is independent of A. Apart from that, C does 
depend on A, and its presence in (18)  implies that this equation is not universal and 
consequently it must be solved for a specific value of A. Furthermore, its solution 
should obviously fulfil a self-consistency condition: the input of C inserted as a 
parameter in (18 )  must be exactly reproduced as an output by the integration of (13). 

2.4. Boundary conditions 

x must be regular at the origin. Given its MacLaurin development: 

x + o  x = a,+ a ,x  + a2x2+ a3x3+ a4x4+ a ,x5+.  , . (19 )  

in order to construct a physical solution of ( 1 8 ) ,  we need to know the value of the 
first four coefficients a,, a , ,  a2 and a3,  of (19 ) .  

Now, as 4 has to be finite at the origin, from (17 )  we deduce that x must be zero 
there, i.e. a, = 0. 

As ( 1 5 )  implies that 

n cannot be zero at the origin, and therefore a1 > 0; and besides dn/dy(,,,,, = 0, which 
implies a, = 0. So we only need to know the values of the first two odd coefficients 
a, and a3 because a, and a, are zero. Therefore the effective MacLaurin expansion 
would be as follows: 

x = a , x + a 3 x 3 + a 4 x 4 +  a5x5+.  . .. ( 2 1 )  

In fact only one of the two unknown coefficients is independent, because one has 
to remember that the total fermion number A is given, and a, is such that the solution 
x has to lodge that precise number of particles. It follows therefore that only one 
additional relation is needed. But where is it? 

Let us explore the substitution of ( 2 1 )  in (18). For small x we have 

(24a4+ 1 2 0 ~ 5 ~ + .  . .) - 2 b 2 p 2 ( 6 a 3 x + .  . .) + p 4 b 4 ( a , x + .  . .)+ p 4 C b S ( x + .  . .) 
= a:’Z(x + . . .) ( 2 2 )  

a,=O 1 2 0 4 -  1 2 b 2 p 2 a 3 + p 4 b 4 a l + p 4 C b 5  = (23 )  

which implies 

so we see that the next even coefficient is also zero. Unfortunately a, and a3 appear 
linked with a 5 ,  which stops us obtaining a3 in terms of only lower coefficients (or 
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parameters of the model). Successive higher powers in the x expansion of (18) link 
higher coefficients which are of no use for our purposes. So far our discussion has 
been based on the search for a solution for (18), which requires the knowledge of the 
first four coefficients of the expansion of x near the origin. We realise that the usual 
two boundary conditions of n’(r = 0) = 0 and an n(0) value such that the solutions 
lodge A, are apparently insufficient to establish a single solution. On the other hand, 
from a physicist’s point of view this is meaningless: we are sure that specifying n(0) 
and n’(0) = 0 should define the physics uniquely. What then is missing in our analysis? 

The key to this consists in realising that in order to obtain a local equation like 
(16) we have been forced to increase the order of differentiation from two to four. In 
doing that we have lost information, in the sense that not all the solutions of (1 1) are 
solutions of (10) whereas all the solutions of (10) are solutions of (11). In order to 
implement TF we need to work with (1 1) because of its locality, but (10) is necessary 
to reduce the extra freedom induced by the operation of differentiation. Let us examine 
this more closely. Substituting (17) in (10) we obtain 

When r’+O, it leads to 

Let us call the right-hand side 0, i.e. 

n(r)  - p ,  D = 2bV0 IoR d3r- e . 
r 

This function is loosely related to the potential energy at the origin, and in that sense 
is a counterpart of C. Equation (25) constitutes the new condition we are looking for, 
linking a, and a 3 :  

(27) 
The horizon is now free, and we are able to perform a numerical integration of (18). 

Cpb + pa,  - (6a3/pb2) = D. 

3. Numerical solutions and conclusions 

The procedure is as follows. Given the set of parameters that define the problem, i.e. 
m, p, Vo and A, we apply the Runge-Kutta method to (18). As b is known, we need 
to specify C, which appears in the equation, plus the x function and its first three 
derivatives at the origin, i.e. ao, a , ,  a, and a3 .  As previously stated a. and a, are zero, 
so our task is to explore an initial set of three parameters a , ,  a3 and C, in such a way 
that, from the resulting x, the following three conditions are fulfilled: 

( i )  Through (20) and (13), the C obtained from x must neccessarily coincide with 
the C used as input in the equation. 

(ii) The A obtained by integrating n must coincide with our assumed fermion number 
of the assembly. 

(iii) The self-consistent C, and the D obtained from (25) must match in (27). 
Our numerical integration is performed using the following set of parameters 

Vo = 15 MeV. (28) m = 939 MeV p = 137 MeV 
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Although they remind us of the scales proper for nuclear physics, this system is clearly 
not a model of the nucleus, because there is no repulsive agent which can induce 
saturation. 

We have obtained two independent solutions to exemplify how this method works. 
In the first case we used C = 132 MeV. This required a ,  = 1.011 and a3 = -0.1088 in 
order to fulfil the three previously stated conditions. The solution corresponds to 
A = 77, with R = 3.14 fm and an average binding of E / A  = -50.5 MeV. In the second 
case, C = 300 MeV, a, = 1.889, a, = -0.254, R = 2.73 fm, A = 137 and E / A  = 
-120.6 MeV. In figure 2, the two TF solutions are plotted. Our results agree with our 
expectations, namely the greater the value of A the more closely packed the system 
is, and there is an increase in the binding energy per fermion. 

I I I I ‘ I  

x 

i A=137 

0 1 2 3 4 
X 

Figure 2. TF solutions for an attractive exponential interaction. 

To fix the extra freedom of (1 l ) ,  we have used (10) in the limit r ’ +  0. It is important 
to remark that we could alternatively have used (9). In that case the condition obtained 
would have been as follows: 

a,+ b ( C  + F )  = O  (29) 

where F is defined as 

This procedure must lead, of course, to the same physical solutions. This has been 
numerically checked in the two solutions explained above. 

To conclude, we have shown how the TF method as used in atomic physics can be 
easily and elegantly extended to the case of exponential forces. It leads to a fourth-order 
differential equation, but in fact the two usual physical inputs n ( 0 )  and n’(0)  = 0 alone 
are sufficient to specify the solutions, because the intermediate second-order integro- 
differential equation provides the additional condition required. Once the procedure 
for dealing with the attractive exponential force is understood, one can easily introduce 
a short-range infinite repulsion, by working with an effective kinetic energy just as we 
did in [SI. 
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